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Abstract. The globular molecular cloud B335 contains a single, deeply embedded, far-infrared

source. Our recent observations of H2CO and CS lines toward this source provide direct kinematic

evidence for collapse, Both the intensity and detailed shape of the line profiles match those expected

from inside-out collapse inside a radius of 0 036 pc. The collapse began about 1.5 × l0 s years ago,

similar to the onset of the outflow. The mass accretion rate is about 10 times the out0ow rate. and about

0.4 3,I_, should have now accumulated in the star and disk. Because B335 rotates only very slowly.

any disk would still be very small (about 3 AU). The accretion iuminositv should be adequate to

power the observed luminosity, Consequently, we believe that B335 is indeed a collapsing protostar.

1. Introduction

It is by now a commonplace that stars form in colla,_-'sing parts of molecular clouds.

Theories of both star and planet formation rely on this fundamental picture. It is

less well known outside the star formation community that direct observational

evidence for collapse is almost entirely lacking. Numerous claims of collapse

motions have been made, but most have encountered considerable skepticism.

More importantly, none have applied to the collapse of a region likely to form a

single protostar (see, e.g., Evans, 1991 ).

The overwhelming kinematic signature in most regions of star formation is

not collapse, but outflow (Lada 1985; Bachiller and G6mez-Gonzzllez, 19931. The

outflow is indicated by a variety of tracers, including wide wings on CO and other

molecular lines, masers, and Herbig-Haro objects. In a spherical picture of star

formation, such outflows would indicate that the collapse phase had already ended

in almost every object studied, even those which seem young by other indications.

The ubiquity of evidence for outflow and the nearly total absence of evidence for

collapse led Wynn-Williams (1982) to refer to a collapsing protostar as the "holy

grail" of star formation studies. As was no doubt true of the legendary grail, there

is no shortage of candidates discovered by infrared and submillimeter continuum

observations. The problem is one of authentication. A candidate must pass the
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;ol[o_mg tests: first, tt must ha_e a kinematlc >tenaturc _)t collapse; _ccond, :{,,

'_umlnostty must plausibly result trom accretion, rather than an',' nuclear reactions.

The latter requirement suggests a focus on obiects early in the collapse phase.

During the last decade, three new' developments have again raised the possi[lility

,_f identifying a collapsing protostar. The first ol these was inside-out collapse t Shu.

1977: Shu ez al., 1987). In their picture, clouds or regions forming stars or low mass

are supported almost entirely by thermal pressure. In these conditions, they would

first relax to a centrally condensed dismbution (r_(r) -'< r 2) and then initiate

collapse from the inside. A wave or infall propagates outward at the effective

,ound speed, and the density distribution inside the infaii radius (rinf) relaxes to

:_l r I x r- t.5. The implications of this idea for collapse searches are several. Since

the collapse occurs first in the inside and occurs at relatively low velocity, we can

detect kinematic evidence of collapse in the early, protostellar phases only with

the use of high spatial and spectral resolution. Because the collapse begins in the

innermost, densest part of the cloud, it will be best revealed by molecular lines

that require high density for excitation. These will tend to "see" through the static

envelope and probe the collapse region. Finally, since this picture was developed for

'_ow-mass star formation, low-mass clouds or regions would be the best candidates.

in particular, small, globular molecular clouds of a few solar masses may have only

a single collapse center, simplifying the kinematic signature.

The second important development was the abandonment of spherical symme-

try.. In non-spherical geometries, collapse and outflow can coexist. Since many

outflows are bipolar, it is natural to think of allowing collapse in the plar, e per-

pendicular to the outflow direction. Theoretically, non-spherical geometries in the

innermost regions of the collapse are a natural consequence of rotation. In calcu-

lations of the collapse of a cloud with initially slow rotation, Terebey, Shu, and

Casson (1984) found that the geometry becomes quite non-spherical and a disk

is likely to form inside the centrifugal radius (where the infall speed equals the

rotation speed). The outflow would then be perpendicular to the plane of the disk.

Since the disk is the likely site of planet formation, it is very important to check

this picture observationally. The relevance of this idea to searches for collapse is

that we need not reject clouds with outflows, but we must use tracers which are not

dominated by outflow.

With the perspective of the first two developments, it is easy to see why obser-

vational evidence of collapse has remained elusive. Almost all simulations of line

profiles from collapsing clouds (e.g., Anglada ez"aL, 1987) and most searches for

kinematic evidence concentrated on CO, a molecule which is abundant and easily

excited. These properties meant that CO emission probed mostly the outer regions

of clouds and that it was especially prominent in outflows. Clearly, simulations of

line profiles and observational efforts needed to focus on different molecular lines.

The third important development grew out of this last realization, Zhou (1992)

modeled the evolution of line profiles during an inside-out collapse, focusing on

lines of molecules which require high densities for excitation. The primary result
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Fig. I. A schemauc Z_agram of a cloud cxpenencing inside-out collapse inside the tuner circle
flabeled r_,O. The ovais are the locus of points with the same velocity projected on the fine o1 sight

to the observer. For a Oenslty sensitive line and the density lield of collapse. B,. and R.. prCu..luce

stronger emission than B_ and R,. Since R_ lies in front of R:, and has the same projected velocity,

R, obscures R2. whereas the strong emission from B2 is unobscured by B_.

of that stcdy is that the best line to employ for collapse searches is one requiring

fairly high densities to excite, but which also has opacity of order 1. The modest

opacity produces a distinctive kinematic signature of collapse, in which the profile

appears self-absorbed (having a central minimum between two peaks), and the

blue-shifted peak is brighter than the red-shifted peak. The self-absorption and the
line width should decrease away from the center of the collapse or when observed

with lower resolution. Finally, if several lines with different critical density are
observed, the line width should increase with increasing critical density. These

properties thus define a distinctive signature of inside-out collapse. In addition to

predicting the general shapes of the lines, the inside-out collapse model, together
with Zhou's radiative transport calculations, provides a prediction for the intensities

and detailed shape of the lines, as a function of the time since collapse began, or

equivalently the infall radius (rinf), making the whole theory eminently testable.

2. The Candidate

Our candidate for collapse is an isolated, roundish globule called B335, located

at a distance of 250 pc. It was probably discovered by Barnard (1927); at least

it takes its name from his photographic atlas. The term globule was given to this

class of objects bv Bok and Reilly (1947), who also suggested that they may

represent objects "'... just preceding the formation of a star." Their suggestion
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was venfied by Kcene et al. / 1983), who discovered a far-infrared source in t]335.

which they suggested "may prove to be ... low luminosity protostar." Two later
papers presenting data on the submillimeter continuum emission/Gce ct al.. 1985

and Chandler et al., t990) actually used the term protostar in the ttt[e, but both with

question marks. The main source of the uncertainty was that outflow, not collapse.
was indicated bv CO observations.

B335 is in man,,' ways an ideal candidate for collapse. The cloud is _rnall and has

very, little turbulence, making it likely that Shu's picture of a thermally supported

cloud is relevant. The infrared source is deeply embedded, being detected only at

,\ > 60 f_m, indicative of an early phase in the collapse process. The outflow is

nearly in the plane of the sky, oriented east-west, with an opening angle of about

45 ° (Hirano et al., 1988; Cabrit et al., 1988). These properties make it possible to
avoid the outflow to some extent by mapping n0rth-south.

Our work on this object began with a map of the 6-cm HzCO line using the
VLA (Zhou et al., 1990). This line, a transition between two states of a K-doublet

(Jr,'_ _,__ = l ll - l l0) appears in absorption against the cosmic background radia-

tion because of a collisional pumping effect which cools its excitation temperature

below 2.7 K (Townes and Cheung, 1969). Since the cosmic background temper-

ature is extremely uniform, it provides a smoothly distributed background lamp,
meaning that any structure in the observations arises in the cloud. We observed

an apparent ring of absorption, with a hole centered near the infrared source and

the location of peak emission in other molecular tracers. The explanation for this

effect is that the collisional pump works optimally in a range of densities from
about 103 to 104 cm-3; above about 10° cm -3, the collisions drive the line into

emission, but there is a range of densities where the line has an excitation temper-

ature close enough to that of the background radiation that neither emission nor

absorption will be seen. We interpreted the nng as the effect of a density gradient
in the source. Detailed modeling showed that a density gradient consistent with

an inside-out collapse (n(r) cx r -_', with c_ = 2.0 outside a radius of about

0.03 pc and and 1.5 inside that radius) gave the best fit to the data. This model then

predicted that the _J = I transitions of HzCO would appear in emission from the

region of the "hole" in the absorption ring. Viewed with sufficient resolution, these

lines might also show the kinematic signature of collapse.

3. The Evidence

To obtain the requisite resolution, the IRAM 30-m telescope was used to observe

simultaneously two ..kJ = I lines of H2CO: the JK_thq = 212 -- lit line

(140 GHz) and the JK_+K_ = 312 -- 2it line (225 GHz). The lines toward the

peak of the map, coincident within uncertainties with the infrared source and a

radio continuum source (Anglada et al., 1992), match the predictions for an inside-

out collapse remarkably well (Zhou et al., 1993). The shapes of the lines provide

strong evidence for collapse. Zhou et al. (1993) also observed three lines of CS
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_.I = 2 - I, 3 - 2, and 5 - 41, anu these lines also indicate collapse, althouen

they are more affected by the outflow than are the H2CO lines. Both molecules can

be used to determine the parameters of the infall by yawing the infall radius and

molecular abundance to find the best tit to the observed profiles. The overall best

fit is obtained for rmf = 0.036 pc, _,_,ith H2CO favoring slightly smaller radii and

CS favoring slightly larger radii. The resulting model profiles are compared with

the observations in Figure 2 (note that the model profiles differ slightly from those

in Zhou et al., 1993, because we have corrected an error in the modeling program I.

The best-fit abundance of H2CO is 3.6 x [0 -9 and the best-fit CS abundance is

3.2 x l0 -'_, consistent with many other determinations, but much more constrained

than previous measurements. The CS lines, especially the 3 - 2 line, are more

affected by the outflow than are the H2CO lines, but spectra at positions to the

north and south (perpendicular to the outflow axis) are relatively free of outflow

emission and match predictions of the model well.

Zhou et aL (1993) considered alternative models for B335, including increased

turbulence toward the center, rotation, spherical expansion, and outflow. None of

these can explain the line profiles. The only alternative model which comes close to

matching the observations requires a foreground cloud absorbing the emission from

the background cloud, which contains the infrared source. This picture requires a

very low velocity dispersion in the foreground gas (Avf = 0. ! 5 km s -t ) for which

there is no supporting evidence. In addition, the CS lines are not well-fitted in this

model unless the central velocity of the background component shifts with J. The

foreground absorption model is highly contrived and thus quite unlikz_,ly. While

certainty is probably unattainable, simplicity certainly favors the conclusion that

B335 is undergoing inside-out collapse, with density and velocity fields given by

Shu et al. (1987).

4. Conclusions

Assuming that the collapse interpretation is correct, one can then use the inside-out

collapse model to compute other quantities of interest. With rinf = 0.036 pc and an

effective sound speed (including a smatl turbulent contribution) of 0.23 km s -_ , the

time since collapse began is 1.5 x l0 s yr, similar to the (quite uncertain) age of the

outflow, indicating that outflow may have begun very early in the collapse. The mass

accretion rate would be 2.8 x 10 -6 .'fie yr- I, about 10 times the mass loss rate in the

outflow. The total mass accumulated in the star and disk would be 0.4 M®, while

the total reservoir from which material could eventually accrete is about 12 AI_..

The B335 cloud rotates only very slowly, with _ -- 1.4 x 10 -14 s -I (Frerking

el al., 1987). Consequently, the centrifugal radius is only 3 AU. Deviations from

spherical symmetry would thus occur on much smaller scales than our resolution

and hence be negligible in our modeling.

Finally, we can ask whether B335 satisfies the other criterion for a collapsing

protostar: luminosity derived from accretion. Given the mass accretion rate derived
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Fig. 2. The observed spectra toward the center of B335 are shown as solid histograms•
The dashed lines are model line profiles predicted bv an inside-out collapse model with r_.f =
0.036 pc.

above, the accretion luminosity would equal the observed luminosity of 3 L,;, as

long as the radius of the star is about 6 R+, consistent with theoretical expectations

(Stahler et al., 1980). All the facts are consistent with the interpretation of B335 as

a collapsing protostar -- the holy grail of star formation.
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